Using Flat-Panel Perfusion Imaging to Measure Cerebral Hemodynamics

نویسندگان

  • Chung-Jung Lin
  • Wan-Yuo Guo
  • Feng-Chi Chang
  • Sheng-Che Hung
  • Ko-Kung Chen
  • Deuerling-Zheng Yu
  • Chun-Hsien Frank Wu
  • Jy-Kang Adrian Liou
چکیده

Flat-detector CT perfusion (FD-CTP) imaging has demonstrated efficacy in qualitatively accessing the penumbra in acute stroke equivalent to that of magnetic resonance perfusion (MRP). The aim of our study was to evaluate the feasibility of quantifying oligemia in the brain in patients with carotid stenosis.Ten patients with unilateral carotid stenosis of >70% were included. All MRPs and FD-CTPs were performed before stenting. Region-of-interests (ROIs) including middle cerebral artery territory at basal ganglia level on both stenotic and contralateral sides were used for quantitative analysis. Relative time to peak (rTTP) was defined as TTP of the stenotic side divided by TTP of the contralateral side, and so as relative cerebral blood volume (rCBV), relative mean transit time (rMTT), and relative cerebral blood flow (rCBF). Absolute and relative TTP, CBV, MTT, CBF between two modalities were compared.For absolute quantitative analysis, the correlation of TTP was highest (r = 0.56), followed by CBV (r = 0.47), MTT (r = 0.47), and CBF (r = 0.43); for relative quantitative analysis, rCBF was the highest (r = 0.79), followed by rTTP (r = 0.75) and rCBV (r = 0.50).We confirmed that relative quantitative assessment of FD-CTP is feasible in chronic ischemic disease. Absolute quantitative measurements between MRP and FD-CTP only expressed moderate correlations. Optimization of acquisitions and algorithms is warranted to achieve better quantification.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel technique for the measurement of CBF and CBV with robot-arm-mounted flat panel CT in a large-animal model.

BACKGROUND AND PURPOSE Endovascular therapy is an emerging treatment option in patients with acute ischemic stroke and especially in cases presenting late after symptom onset. Information about remaining viable tissue as measured with perfusion imaging is crucial for proper patient selection. The aim of this study was to investigate whether perfusion imaging with C-arm CT in the angiography sui...

متن کامل

The Significance of Cerebral Hemodynamics Imaging in Carotid Endarterectomy: A Brief Review

The indication of carotid endarterectomy (CEA) is principally determined by the presence or absence of symptoms and the degree of stenosis. However, the results of recent studies have implicated the usefulness of cerebral hemodynamics imaging for perioperative assessments. Many studies using single-photon emission computed tomography (SPECT) have demonstrated that cerebral hemodynamics imaging ...

متن کامل

Utilizing flat-panel detector parenchymal blood volume imaging (FD-PBV) for quantitative kidney perfusion analysis during the process of percutaneous transluminal renal angioplasty (PTRA)

Rationale: Traditional digital subtraction angiography (DSA) provides lumen morphology of renal artery as indicators for vascular patency in patients with renal artery stenosis (RAS). It, however, lacks hemodynamic information toward target kidney. To solve this shortcoming, a novel technique, flat-panel detector parenchymal blood volume imaging (FD-PBV), is introduced, which is able to evaluat...

متن کامل

Evaluation of an Acute Stroke Patient with Flat Detector CT Prior to Mechanical Thrombectomy

Flat panel detectors have revolutionized tomographic imaging in the angio suite. Recent developments in hardware and software have improved soft tissue resolution and acquisition time even further, enabling soft-tissue and perfusion imaging within the angio suite. The so called “one-stop-shop” stroke imaging with flat panel detector computed tomography (FDCT) will significantly improve door to ...

متن کامل

Principles of cerebral perfusion imaging by bolus tracking.

The principles of cerebral perfusion imaging by the method of dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) (bolus tracking) are described. The MRI signals underlying DSC-MRI are discussed. Tracer kinetics procedures are defined to calculate images of cerebral blood volume (CBV), cerebral blood flow (CBF), and mean transit time (MTT). Two general categories of numerical p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 95  شماره 

صفحات  -

تاریخ انتشار 2016